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The yeast Saccharomyces cerevisiae employs multiple path-
ways to coordinate sugar availability and metabolism. Glucose
and other sugars are detected by a G protein– coupled receptor,
Gpr1, as well as a pair of transporter-like proteins, Rgt2 and
Snf3. When glucose is limiting, however, an ATP-driven proton
pump (Pma1) is inactivated, leading to a marked decrease in
cytoplasmic pH. Here we determine the relative contribution of
the two sugar-sensing pathways to pH regulation. Whereas
cytoplasmic pH is strongly dependent on glucose abundance
and is regulated by both glucose-sensing pathways, ATP is
largely unaffected and therefore cannot account for the changes
in Pma1 activity. These data suggest that the pH is a second
messenger of the glucose-sensing pathways. We show further
that different sugars differ in their ability to control cellular
acidification, in the manner of inverse agonists. We conclude that
the sugar-sensing pathways act via Pma1 to invoke coordinated
changes in cellular pH and metabolism. More broadly, our findings
support the emerging view that cellular systems have evolved the
use of pH signals as a means of adapting to environmental stresses
such as those caused by hypoxia, ischemia, and diabetes.

Nature provides a variety of sugars of varying complexity and
abundance. Like most organisms, yeast preferentially use glucose
as a source of carbon and energy, and there are multiple signaling
pathways that respond accordingly. When preferred sugars are in
short supply, the resulting changes in metabolism are mediated by
the protein kinase Snf1 (sucrose non-fermenting 1), the founding
member of the AMP-activated proteinkinase(AMPK)3 family(1,2).

Two other protein kinase systems, considered here, coordi-
nate the response to glucose availability and thereby act in
opposition to Snf1. Of these, the best understood is the cAMP-
dependent protein kinase (PKA). PKA is activated by cAMP, a
second messenger generated from ATP by the adenylyl
cyclase enzyme Cyr1 (3–6). The addition of glucose to starved
cells results in a 2–3-fold spike of cAMP (7–9). Upon cAMP
binding to the PKA regulatory subunit (Bcy1), the catalytic sub-
units (Tpk1, Tpk2, and Tpk3) are liberated, and each phosphor-
ylates a distinct panel of substrates (10 –16).

The enzyme adenylyl cyclase is regulated by both large and
small (Ras family) G proteins (5, 9, 17–26). The large G protein
is composed of a typical G� protein, Gpa2, and an atypical G�
subunit, Asc1 (27). Gpa2 is activated by the cell surface receptor
Gpr1 (7, 28) (29 –32) and inactivated by the GTPase-accelerat-
ing protein Rgs2 (33). The small G proteins Ras1 and Ras2 are
activated by the guanine nucleotide exchange factors Cdc25
and Sdc25 (34 –40) and inactivated by Ira1 and Ira2 (41–44). It
is not known how Cdc25 and Sdc25 are themselves activated.

Another glucose-sensing system consists of Yck1 and Yck2
(yeast type I casein kinase). These kinases are physically associ-
ated with the cell surface proteins Rgt2 and Snf3. Although they
are homologous to glucose transporters, Rgt2 and Snf3 appear
to have lost their transporter function and instead serve exclu-
sively as receptor or “transceptor” proteins. Following glucose
addition (45–47), Rgt2 and Snf3 recruit the transcription core-
pressors Mth1 and Std1 (48, 49), which are then phosphorylat-
ed by Yck1 and Yck2, ubiquitinated, and degraded (50 –52). The
destruction of Mth1 and Std1 derepresses genes encoding
hexose transporters and promotes the uptake of the newly
available sugars (47, 53– 62).

Whereas much is known about the various glucose-sensing
pathways, comparatively little is known about how their activ-
ities are coordinated. One way that cells can integrate signaling
is through the production of chemical second messengers. For
example, glucose abundance stimulates adenylyl cyclase activ-
ity, cAMP production, and activation of PKA (reviewed in Ref.
63). Conversely, glucose limitation leads to increased cellular
ADP and activation of AMPK (64, 65). Thus, there is a recipro-
cal regulation of two adenosine metabolites, cAMP and ADP,
and two distinct kinases, PKA and AMPK. These kinases then
converge on at least one major transcription factor, Msn2.
Whereas AMPK/Snf1 phosphorylates and activates Msn2 (66,
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67), PKA phosphorylation prevents Msn2 from translocating to
the nucleus (68 –70). There is also an additional layer of regu-
lation wherein Snf1 phosphorylates and inhibits adenylyl
cyclase and the PKA pathway (71) and, conversely, PKA phos-
phorylation inhibits the Snf1 response (72). These findings sug-
gest the existence of a mutual inhibitory network that acts in
response to glucose limitation and that can generate distinct
dynamic patterns of transcription factor activation (73).

Here we consider the role of pH as a potential second mes-
senger of glucose availability. It is well-established, but perhaps
not widely appreciated, that cytoplasmic pH drops by as much
as a full log unit in glucose-limiting conditions (74 –76). Much
of this change is probably due to inactivation of Pma1, an ATP-
driven proton pump and master regulator of yeast intracellular
pH that is located at the plasma membrane (77). Our approach
was to systematically delete components of the two known glu-
cose-sensing pathways (Rgt2/Snf3 and Gpr1) and quantify cel-
lular pH, over time, at high or low concentrations of a variety of
sugar sources. We find that both pathways regulate cellular
acidification and do so in a coordinated manner. Finally, we
show that naturally abundant sugars inhibit cellular acidifica-
tion and do so in the manner of pharmacological inverse
agonists.

Results

Intracellular acidification in response to glucose stress

Glucose starvation is well-known to promote the induction
of stress-responsive genes (78). Also well-documented, but not
widely appreciated, is the ability of glucose to regulate the pH of
the cytoplasm; when glucose is limiting, intracellular pH drops
by as much as a full log unit (74 –76). However, the cause and
consequences of these changes have remained obscure. To
address this gap in our understanding, we tested the hypothesis
that pH serves as a second messenger for one or more of the
glucose-sensing pathways in yeast (Fig. 1).

We began by comparing 45 different gene deletion strains,
each lacking one or more core components of the glucose path-
ways. These deletions represent receptors, effectors, protein
kinases, and transcription factors (Fig. 1). For several closely
related protein kinases and receptors, we also analyzed double
and triple deletion mutants. We did not consider genes essen-
tial for viability or that exhibit severe growth defects when
absent: Pma1 (ATP-driven proton pump), Cyr1 (adenylyl
cyclase), Bcy1 (PKA regulatory subunit), Snf4 (AMPK regula-
tory subunit), Glc7 (AMPK phosphatase), Ira1 (Ras GTPase–
activating protein), and Sdc25 and Cdc25 (activators of Ras). To
detect dynamic changes in cellular pH, we transformed each
strain with pHluorin, a ratiometric pH reporter based on the
green fluorescent protein (75, 79).

Cells were grown to mid-log phase in the presence of 1.6%
(w/v) glucose (hereafter “high” glucose), washed, and resus-
pended in medium containing either no glucose or one of seven
different glucose concentrations ranging from 0.025 to 1.6%. As
illustrated in Fig. 2A for wildtype yeast, pH measurements were
made immediately after resuspending the cells and then moni-
tored for 30 min in a microplate reader. Kinetic pH traces were
collected for each deletion strain. These pH traces were nearly
identical (within 0.1 pH units of wildtype) at higher glucose
concentrations (�0.1%) but differed in several cases at lower
glucose concentrations. This result is illustrated in Fig. 2B at a
single time point (10 min) for wildtype and two representative
strains missing glucose-sensing pathway components (gpa2�
and rgt2�). Based on this finding, we refined our approach to
focus on pH responses at lower glucose concentrations. We
proceeded by quantifying intracellular pH in the 45 deletion
strains at a single time point (10 min) after treatment with a
single glucose concentration that evokes a nutrient stress
response (0.05%) (Fig. 2C) (63).

As is shown in Fig. 2C, a continuum of intracellular pH values
was observed in response to glucose limitation. It is notable that
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Figure 1. Sugar-sensing pathways couple sugar stress to intracellular acidification. Three pathways in S. cerevisiae respond to changes in sugar availabil-
ity. Colors of signaling components indicate the observed effects of deletion mutations on intracellular pH, as described under “Results.” Key, ranked color
groupings correspond to a mean �pH � �0.2 (dark blue), �0.2 � �pH � �0.1 (blue), �0.1 � �pH � �0.05 (purple), �0.05 � �pH � 0.05 (green), 0.05 � �pH �
0.1 (yellow), 0.1 � �pH � 0.2 (orange), and �pH � 0.2 (red). Components required for proper growth or viability were not tested (gray). GEF, guanine nucleotide
exchange factor; GAP, GTPase activating protein; rPKA and cPKA, regulatory and catalytic subunits of protein kinase A; rPP1 and cPP1, regulatory and catalytic
subunits of the protein phosphatase.
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these pH differences would have been missed if only higher
glucose concentrations had been studied. As the data in Fig. 2C
indicate, most deletion strains exhibited a change in pH similar
(within 0.2 units) to wildtype cells. In contrast, deletion of the
AMPK gene (snf1�) resulted in overacidification by �0.2 pH
units. Conversely, and unexpectedly, many of the other deletion
strains exhibited a dramatic underacidification (�0.2 pH
units); these include cells lacking putative glucose receptors
(rgt2� or gpr1�), the G� protein (gpa2�), the AMPK phospha-
tase adaptor protein (reg1�), and several transcription factors
(mig1�, hxk2�, and rgt1�). The acidification defect was greater
in the combined absence of GPR1 and RGT2/SNF3 than in the
absence of either pathway alone (Fig. 2C). These results indicate

that the known glucose signaling systems work in parallel to
regulate cytoplasmic pH (i.e. pH is a general readout of glucose
availability). Whereas sensors of glucose abundance (Rgt2/Snf3
or Gpr1) are necessary for proper cellular acidification, the intra-
cellular sensor of glucose limitation (Snf1) is needed to prevent
overacidification. We conclude that the Rgt2/Snf3 and Gpr1 path-
ways act in a non-redundant and coordinated manner.

Regulation of intracellular acidosis in response to sugar stress
is largely independent of ATP levels

Glucose could function in one of two ways to maintain nor-
mal pH in the cell. First, glucose could function pharmacolog-
ically (e.g. by binding to cell surface receptors). Given the high
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Figure 2. Intracellular acidification in response to glucose stress. Intracellular pH measurements as reported by the genetically encoded pH biosensor pHuorin. A,
kinetics of intracellular pH recovery in response to glucose readdition in wildtype yeast. Cells were grown in 2% glucose to A600 nm �1.0, harvested by centrifugation,
and washed twice in glucose-free medium before adding the indicated concentration of glucose. Equivalent pH recovery profiles were measured for each strain in this
study. pH values for each of the glucose concentrations were compared at the 10-min time internal within each kinetic trace (indicated by the vertical gray band). B,
intracellular pH recovery 10 min after glucose readdition for WT and yeast strains missing two exemplary components of sugar-sensing pathways, a G-protein �
subunit (Gpa2) and sugar receptor (Rgt2). The shaded gray area indicates the operational definition of stress-inducing concentrations of glucose. C, intracellular pH
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effective concentrations of glucose necessary to evoke a
response, it is not currently feasible to conduct standard equi-
librium-based interaction assays for these ligands or their
receptors. Thus, it is conceivable that the receptors do not bind
directly to sugars, or these sugars function as allosteric regula-
tors rather than orthosteric ligands. Alternatively, glucose
metabolism could produce one or more products that activate
protein targets within the cell (80). For example, glucose drives
the production of ATP, which is needed to fuel the extrusion of
metabolic proton equivalents by the ATP-driven proton pump,
Pma1. ATP is also an essential metabolic precursor of cAMP,
which binds to and activates PKA. Thus, it is plausible that
cAMP is produced via mass action merely as a result of
increased ATP production.

To better understand the mechanisms by which glucose
levels regulate intracellular pH, we sought to determine the
correspondence between pH, ATP (which activates Pma1 and
adenylyl cyclase), and cAMP (which activates PKA). Our goal
was to quantify relative intracellular ATP, cAMP, and glucose
levels from single experimental samples collected under condi-
tions of high and low glucose. To this end, we turned to mass
spectrometry, which is widely considered the most reliable
method for measuring the relative abundance of metabolites in
complex mixtures. Given the pleiotropic effects of the AMPK
pathway, we restricted our analysis to the Rgt2/Snf3 and Gpr1/
Gpa2 signaling axes. Wildtype and select deletion strains
(rgt2�, snf3�, gpr1�, and gpa2�) were washed and resuspended
in either 1.6 or 0.05% glucose for 10 min. Soluble cell lysates
were then spiked with isotope-labeled ATP and AMP and then
quantified by HPLC-MS/MS analysis. Glucose was measured as
an internal reference control, and data were collected as the
peak area ratio for each metabolite and its corresponding stable
isotope standard. Stable isotope-labeled ATP was used for ana-
lyte ATP; stable isotope-labeled AMP was used for analyte
cAMP and glucose.

As shown in Fig. 3A and Table S1 and as reported previously
using other methods (81), intracellular ATP levels remained
high in glucose-limiting conditions. ATP levels were similarly
maintained (or elevated) in the four deletion strains (rgt2�,
snf3�, gpr1�, and gpa2�). Thus, it appears that the accumula-
tion of intracellular protons is not the result of Pma1 inactiva-
tion caused by metabolic depletion of ATP. Rather, our data
support an alternative hypothesis wherein Pma1 is inactivated
before any depletion of ATP, possibly to preserve ATP for other
essential metabolic activities. As shown in Fig. 3B, intracellular
cAMP levels were also unaffected by changes in glucose abun-
dance (confirmed experimentally; Fig. 3C). In light of these
observations, we conclude that adenosine nucleotide metabo-
lism and pH are regulated independently. Whereas the known
glucose receptors are critically important for proper pH regu-
lation, they are not required to maintain high cellular levels of
ATP or cAMP.

Gpa2 is both a pH sensor and sugar-sensing pathway
component

Several previous observations led us to reason that the G
protein � subunit, Gpa2, is likely to be a sensor of intracellular
pH. Prior structural informatics calculations by our group have

shown that buried ionizable networks are a structural hallmark
of G� pH sensitivity (82). Using a variety of biophysical tech-
niques, we and others have shown that pH regulates the con-
formation of G protein � subunits, both in yeast (Gpa1) and
animal cells (G�i) (83, 84). However, we know from this work
that we cannot mutate residues that are predicted to account
for pH-sensing activity (82). Mutations within this highly con-
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served network (e.g. Lys-270 and Lys-277 of G�i) failed to
express and could not be analyzed biochemically (82).

In Fig. 4A, we provide an updated informatics analysis, using
our newer approach known as consensus network analysis (82).
This calculation shows that buried ionizable networks are spa-
tially conserved in the full set of 112 G� protein structures
available in the Protein Data Bank (PDB). Furthermore, this
pH-sensitive network is also conserved in the homology model
of yeast Gpa2 shown in Fig. 4B. Together, these observations
suggest that Gpa2 is also regulated by changes in intracellular
pH.

To test whether Gpa2 structure and function is pH-regu-
lated, we overexpressed and purified the protein from bacteria
and measured its thermostability as a function of pH. As with
GTP�S-bound Gpa1 and G�i (83, 84), Gpa2 exhibited a highly
cooperative pH-dependent shift in thermostability (Tm value)
(Fig. 4C), ranging from a Tm value of 54 °C at pH 5.0 to a Tm

value of 44 °C at pH 8.0. These observations indicate that Gpa2
has the structural and functional hallmarks of a pH-sensing
protein. In contrast to other G� proteins, however (82), the
effects of pH are similar for the GDP- and GTP�S-bound forms
of the protein. We conclude that Gpa2 undergoes pH-depen-
dent conformational changes in both the activated and inacti-
vated states.

Sugar sensors and G proteins couple carbon stress to
intracellular acidity

As shown above, we could not detect appreciable changes in
intracellular ATP or cAMP levels as a function of glucose con-
centration or in the absence or presence of glucose receptors.
This is in marked contrast to the dramatic changes in cytoplas-
mic pH that we observed under the same experimental condi-
tions. Moreover, because deletion of components in different
sugar-sensing pathways has similar effects on cytoplasmic pH,
we inferred that Gpr1/Gpa2 and Rgt2/Snf3 have non-redun-
dant signaling functions. Thus, we considered an alternative
model where glucose is not only a nutrient but also a ligand that
dictates the abundance of a proton second messenger. Given
that receptors are necessary for proper acidification, and glu-
cose prevents acidification, we surmised that glucose functions
as an “inverse agonist” with respect to pH signaling (i.e. binding
of glucose puts the receptor in an inactivated state and prevents
receptor-mediated cellular acidification). By extension, other
sugars might behave as agonists or partial agonists (or lack
activity entirely and are simply metabolized).

As an initial test of the model, we measured cellular pH in
response to a panel of sugars, at high or low concentrations, and
in the presence or absence of select signaling components
(Rgt2, Snf3, Gpr1, and Gpa2). As shown in Fig. 5A, intracellular
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pH was within the normal range when maintained in high con-
centrations (1.6%) of glucose, fructose, and mannose. In con-
trast, intracellular pH was substantially lower when maintained
in low concentrations of these same sugars (Fig. 5A). Thus,
according to our model, glucose, fructose, and mannose serve
as inverse agonists (or negative allosteric regulators) of both
sugar-sensing pathways. Other sugars (maltose, sucrose, and
galactose) appear to lack any signaling activity. Indeed, the
readdition of these three other sugars, in a pairwise fashion and
at high concentration (1.6%), does not affect the apparent
inverse agonism of fructose, glucose, and mannose (Fig. 5B).
Moreover, any metabolism of disaccharides to glucose and
fructose is evidently insufficient to affect signaling over the
duration of the experiment (10 min) (85). From these observa-
tions, we conclude that Rgt2/Snf3 and Gpr1/Gpa2 maintain
intracellular acidosis (the default state) in the absence of inhib-
itory sugar ligands.

Last, we assessed the relative importance of Gpa2 pH sensing
in both sugar-sensing pathways (Fig. 5C). To this end, we mea-
sured intracellular pH under conditions of high and low glu-
cose, in wildtype and select deletion strains transformed with a
constitutively active (GTPase-deficient) G� mutant, Gpa2Q300L

(Fig. 5C) (8). As expected, constitutive Gpa2 activity restored
the acidotic state under conditions of low glucose in the gpr1�
and gpa2� strains. Furthermore, these data indicate that loss of
Gpr1 inhibition under conditions of low glucose is required for
Gpa2 activation, which mirrors the establishment of intracellu-
lar acidification. From these observations, we conclude that
Rgt2/Snf3 and Gpr1 (via Gpa2-GTP) work in concert to main-
tain intracellular acidosis (the default state) except when pre-
vented from doing so by an inhibitory sugar ligand (glucose,
fructose, and mannose).

Discussion

Here we present several new and important features of the
glucose-sensing apparatus in yeast. We show that multiple sug-
ars and sugar-sensing pathways regulate cellular pH. Whereas
AMPK prevents cellular acidification, activation of the PKA
and YCK phosphorylation cascades promotes increased acidi-
fication. Adenosine metabolites are, comparatively speaking,
unaffected. Moreover, a key upstream component of the PKA
pathway (Gpa2) is itself sensitive to pH. Given that changes in
pH are a common feature of all three sensing pathways, are
affected by a variety of different sugars, and are detected by a
key component of one of the pathways, we propose that
changes in proton abundance help to coordinate cellular
responses to nutrient availability.

Our initial hypothesis was that a reduction in ATP availabil-
ity might account for the reduction in cellular pH. This hypoth-
esis was based on the expectation that glucose limitation would
slow glycolysis and reduce intracellular ATP levels. This, in
turn, would diminish proton extrusion from the cytoplasm by
Pma1, the ATP-driven proton pump that serves as the master
regulator of yeast intracellular pH. On the other hand, at least
one other group, using an alternative method, has shown that
ATP levels increase in response to glucose limitation in yeast
(81). Thus, a reduction in glucose may instead lead to the direct

inactivation of Pma1 and other ATP-driven processes, possibly
as a way to conserve energy in the face of looming starvation.

Apart from any effect of ATP, the changes in pH are due, at
least in part, to the phosphorylation of Pma1. It is well-estab-
lished that glucose addition leads to robust (10-fold), rapid
(�10 min), and reversible phosphorylation and activation of
Pma1 (77, 86, 87). Although the protein kinase(s) have not been
identified, it seems likely that Pma1 is targeted by protein
kinases downstream of Gpr1 and/or Snf3/Rgt2. In support of
this model, deletion of either TPK1 or TPK2 leads to overacidi-
fication in response to glucose stress. On the other hand, dele-
tion of TPK3 has the opposite effect, and the functionally
important phosphorylation sites do not conform to the PKA
consensus sequence (R/K)(R/K)X(S/T). The YCK1 and YCK2
deletions did not affect pH (Fig. 2).

Whereas the ability of G proteins to control glucose metab-
olism is well-established, less is known about how changes in
glucose metabolism affect G protein structure and function.
We and others have shown that pH strongly influences the con-
formation of G-protein � subunits, both in yeast and in animal
cells. pH-dependent changes in Gpa1 and G�i were docu-
mented by measurements of thermal stability and confirmed by
NMR spectroscopy (83, 84). In the case of Gpa1, pH-dependent
changes result in increased phosphorylation of the protein and
diminished responsiveness to the mating pheromone receptor.
Likewise, our computational and biochemical evidence indi-
cates that Gpa2 is a pH sensor. Indeed, our in vitro Gpa2 results
are consistent with the pH effects associated with Gpa2 over-
expression and rescue experiments presented in Fig. 5. These
data indicate that there is a correspondence between Gpa2 lev-
els and the degree of intracellular acidification in response to
glucose stress. We speculate that the pH-sensing capabilities of
Gpa2 establish a positive feedback loop that increases Gpa2
activity as cellular pH drops in response to carbon stress.

Our findings complement those of Dechant et al. (76, 88),
who showed that glucose limitation leads to the inactivation of
another pH regulator, the vacuolar ATP-driven proton pump
V-ATPase. Those investigators likewise considered a possible
link between pH signaling and the small G proteins Ras1 and
Ras2 (76). Whereas deletion of the V-ATPase component
Vma2 led to diminished Msn2 translocation and transcrip-
tional induction in response to glucose limitation, there was no
change in Ras activation or cAMP abundance (76). Based on
those findings and the findings presented here, we conclude
that pH acts as a second messenger downstream of the glucose
receptor and Ras-mediated signaling pathways. Although a fol-
low-up paper (88) reported a “drastic decrease” in Ras activity
in the same vma2 mutant, those findings relied on a cell-based
assay that monitors the location of Ras-binding domain fused to
GFP. Interpretation of such experiments is complicated by the
fact that GFP fluorescence and the effector-binding region of
H-Ras are also sensitive to pH (75, 79, 89).

In conclusion, we propose that pH serves as a “universal”
second messenger of glucose availability. Thus, the observed
changes in pH could signal the loss of glucose availability and
invoke coordinated cellular responses to glucose stress (90 –
93). Whereas sensors of glucose abundance (Rgt2/Snf3 or
Gpr1) are necessary for proton accumulation, the sensor of glu-
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cose limitation (Snf1) is needed to prevent overacidification. In
contrast to ATP and cAMP, the changes in pH are robust and
sustained. Finally, we propose that some sugars regulate cellu-
lar acidification in the manner of pharmacological inverse ago-
nists. A challenge for the future is to determine the underlying
mechanisms of receptor signaling, the identity of other cellular
targets of pH regulation, and their validation as potential tar-
gets for human pharmacology.

Experimental procedures

Yeast strains

Strains used in this study were BY4741 (MATa leu2� met15�
his3� ura3�) and BY4741-derived mutants from the yeast dele-
tion library (Invitrogen). Yeast deletion strains that exhibited
pH recovery phenotypes that differed from wildtype by �0.2
�pH units were remade in our laboratory using the KanMX4
cassette that confers resistance to the antibiotic G418: hxk2�,
reg1�, mig1�, gpr1�, rgt1�, rgt2�, gpa2�, and snf1�. Addition-
ally, several strains from the yeast deletion library were remade
to build a variety of double and triple deletion strains. Remade
gpa2� was used to build the double deletion strain gpa2�::
KanMX4 gpr1�::HIS3. Remade snf3� was used to build the
double deletion strain rgt2�::URA3 snf3�::KanMX4 and the tri-
ple deletion strain rgt2�::URA3 snf3�::KanMX4 gpr1�::HIS3.
Remade tpk1�, tpk2�, and tpk3� were used to build the three
double deletion strains tpk1�::KanMX4 tpk2�::URA3, tpk1�::
KanMX4 tpk3�::URA3, and tpk2�::KanMX4 tpk3�::URA3.
Remade mth1� was used to build the double deletion strain
mth1�::KanMX4 std1�::URA3. Last, the triple deletion strain,
elm1�::URA3 sac1�::LEU2 tos3�::KanMX4, was made previ-
ously in our laboratory (94).

Plasmids

Plasmids used in this study were pYEplac181 (2�, ampR,
LEU2	) containing the pHluorin gene under control of a con-
stitutive TEF1 promoter (a gift from Rajini Rao, Johns Hopkins
University) and pYEplac195 (2�, ampR, URA3	) containing
genes for GPA2 or GPA2Q300L under control of a constitutive
ADH1 promoter (a gift from Joseph Heitman, Duke University)
(95).

Media

All sugar readdition experiments were done in synthetic
complete (SC) pH medium: 50 mM dibasic potassium phos-
phate, 50 mM dibasic sodium succinate, 2% glucose, 1.7 g/liter
yeast nitrogen base, 5 g/liter ammonium sulfate, 0.69 g/liter
CSM-LEU mixture (complete synthetic medium lacking leu-
cine), titrated to pH 5.0 with HCl and sterile-filtered. For plas-
mid transformations, strains were grown in YPD (10 g/liter
yeast extract, 20 g/liter peptone, 2% glucose), transformed
using the LiAC method, and plated on SC dextrose plates (5
g/liter ammonium sulfate, 1.7 g/liter yeast nitrogen base, 1
NaOH pellet, 15 g/liter bacto agar, 2% glucose, and either 0.69
g/liter CSM-LEU for the pHluorin plasmid or 0.67 g/liter CSM-
LEU-URA for co-transformation of the pHluorin plasmid and
each of the GPA2 plasmids). CSM mixtures were purchased
from MP Biomedicals.

Gpa2 production, purification, and thermal stability
measurements

A carboxyl-terminal His6-tagged version of yeast Gpa2 was
subcloned into a pLicHis plasmid for overexpression in E. coli.
Using methods extensively detailed in our previous studies of G
proteins (82, 96), Gpa2 protein was produced via autoinduc-
tion, batch nickel-affinity–purified, and thermally unfolded as a
function of pH by the fast quantitative cysteine reactivity
(fQCR) assay (97).

Measurement of intracellular pH

Intracellular pH was measured using the pH biosensor
pHluorin expressed under the control of a constitutive TEF1
promoter from an episomal plasmid YEplac181 (2�, ampR,
LEU2	). Cells were grown in 2% glucose to A600 nm �1.0 at
30 °C, harvested by centrifugation, and washed twice in SC dex-
trose pH medium lacking glucose. In a 96-well microplate, 180
�l of washed cells were combined with 20 �l of 10% (w/v) glu-
cose using a multichannel pipette to achieve final glucose con-
centrations of 1.6, 0.8, 0.4, 0.2, 0.1, 0.05, 0.025, and 0% (w/v).
The samples were then mixed five times using a multichannel
pipette and immediately placed in a SpectraMax fluorescence
plate reader to measure pH recovery kinetics over 30 min at an
ambient reader temperature of 22 °C. This process had a dead
time of 30 s. As described previously in detail (82), the pHluorin
biosensor provides a ratiometric readout of pH; using a stan-
dard curve, intracellular pH values are calculated from the
emission ratio at 520 nm (r) in response to excitation at 395 and
480 nm (i.e. r � 395@520 nm/480@520 nm). In our hands, pHluo-
rin-based pH measurements are highly reproducible, with
experimental uncertainties usually �0.02 pH units.

Sugar-mixing experiments

Cells containing pHluorin were grown in 2% glucose to an
A600 nm of 1.0 at 30 °C. Cells were harvested and washed by
transferring 1.0 ml of culture to several 1.5-ml tubes, centrifug-
ing for 30 s at 21,000 relative centrifugal force, aspirating the
supernatant, and resuspending the cell pellet in 1.0 ml of low
fluorescence SC pH medium lacking glucose and made with
low fluorescence yeast nitrogen base lacking folic acid and ribo-
flavin (Formedium CYN6505). This process was repeated once
more to remove any residual glucose. A pairwise sugar combi-
nation matrix of fructose, galactose, glucose, maltose, mannose,
and sucrose was mixed in a 96-well microplate (Greiner 96
F-bottom; 655209) by combining 160 �l of washed cells with 20
�l of a 16% (w/v) solution of each pairwise sugar (final sugar
concentrations of 1.6%). For example, the fructose and glucose
pairwise mixture contained 160 �l of cells in low fluorescence
SC pH medium, 20 �l of a 16% (w/v) fructose, and 20 �l of 16%
(w/v) glucose. Medium blanks for background subtraction
were composed of 160 �l of low fluorescence SC pH medium
combined with 40 �l of water. The mixed sugar matrix was
incubated for 10 min at room temperature, and pHluorin fluo-
rescence was quantified using a ClarioStar plate reader (excita-
tion wavelengths of 385 and 475 nm, and bandpass filter of 15
nm; dichroic filter of 500 nm; emission wavelength of 528 nm
and bandpass filter of 16 nm; matching channel gains of 1,800;
40 flashes/well; and orbital averaging with a scan diameter of 3
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mm). All pHluorin measurements were made within 10 min of
sugar readdition to avoid the onset of invertase enzymatic activ-
ity (85).

Structural informatics

PDB (98) identifiers for the 112 G� structures analyzed in
this study were obtained from the SMART database (http://
smart.embl-heidelberg.de)4 using the domain identifier G_
alpha (99, 100). Using the Protein Data Bank’s advanced search
feature, these PDB identifiers were batch-queried to build a
custom table of CATH (http://www.cathdb.info)4 (101, 102)
and PFAM (http://xfam.org)4 (103) identifiers (Table S2). This
table was used to organize each G� subunit by PDB identifier,
protein chain, and domain (Table S3). pHinder and consensus
network analysis calculations were performed exactly as
described previously (96). The yeast Gpa2 homology model was
built using Swiss-Model (http://swissmodel.expasy.org)4 by
threading the Gpa2 primary sequence, obtained from the
Saccharomyces Genome Database (http://www.yeastgenome.
org),4 onto the template structure corresponding to chain A of
the PDB identifier 4N0D (Rattus norvegicus G�i1 subunit)
(104).

Sample preparation for measuring intracellular ATP
concentration

Cells were grown to a A600 nm of �1.0, collected by centrifu-
gation, and resuspended twice in SC medium and a third time
in SC medium plus either 1.6% or 0.05% glucose. After 10 min,
the cells were again collected, snap-frozen, and then resus-
pended in 200 �l of water containing stable isotope-labeled
ATP and AMP and boiled for 10 min. Samples of growth
medium were collected in parallel to confirm changes in extra-
cellular glucose and to establish background levels of adenosine
metabolites. Cell lysates were centrifuged at 14,800 
 g at 4 °C,
and the supernatant was removed for LC-MS analysis. LC-MS
samples contained 25% (v/v) supernatant and 75% acetonitrile
(v/v).

HPLC-MS/MS quantification of intracellular glucose, ATP, and
cAMP

Mass spectrometry experiments were performed on a
Thermo Fisher TSQ-Quantum Ultra triple-quadrupole mass
spectrometer coupled to a Surveyor HPLC system following the
method of Johnsen et al. (105). Chromatography was per-
formed on a Sequant ZIC-pHILIC 2.1 
 150-mm, 5-�m col-
umn (MilliporeSigma, Billerica, MA) held at 15 °C using a
mobile phase of 100 mM ammonium bicarbonate (Sigma-Al-
drich) in deionized water (generated on-site using a filtration
system from Pure Water Solutions, Hillsborough, NC) and ace-
tonitrile (Fisher OptimaTM, Thermo Fisher Scientific, Wal-
tham, MA) flowing at 0.2 ml/min. The aqueous portion was
held at 25% from 0 to 2 min, increased linearly to 50% from 2 to
8 min, held at 50% from 8 to 12 min, decreased to 25% from 12
to 12.5 min, and then held at 25% until 15 min. Injection volume
was 10 �l, and column effluent was diverted to waste for the

first 2.3 min of each run. Analytes and stable isotope-labeled
internal standards were detected in negative mode using mass
transitions and collision energies as listed in Table S1. Electro-
spray conditions were as follows: spray voltage of 3000 V,
vaporizer (HESI) temperature of 200 °C, sheath gas pressure 40,
auxiliary gas pressure 20, ion sweep gas pressure 1.0, capillary
temperature of 350 °C, and argon collision gas pressure of 1.5
millitorrs.

Reported peak areas for each sample set were generated by
calculating the peak area ratio of analyte to internal standard.
Calculations for ATP used 13C10

15N5-ATP, and calculations for
cAMP and glucose used 13C10

15N5-AMP as an internal stan-
dard. Xcaliber version 3.0.63 was used for acquisition and
data analysis. Internal standards (ATP and AMP) and analyte
standards (cAMP, ATP, and glucose) were purchased from
Sigma-Aldrich.
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